论文标题

分子中的非热拓扑:分数量子数的预测

Non-Hermitian topology in molecules: Prediction of fractional quantum number

论文作者

Li, J.

论文摘要

我们提供了一个简单的玩具模型来研究著名的Jahn-Teller型分子。由于非绝热耦合和有限温度效应而导致的有限寿命导致有效的哈密顿量为非温和者。这种效果将圆锥形的交叉点拉到一对连接的Weyl点,由费米弧桥接。费米弧的长度取决于非电性的强度。这是非霍米特拓扑的独特特征,没有遗传学类似物。我们预测分子中的Weyl点的存在,从而引起异常的Jahn-Teller效应和分数量子数。

We give a simple toy model to study a famous Jahn-Teller type molecule. Finite lifetime due to non-adiabatic coupling and finite temperature effect results in the effective Hamiltonian to be non-Hermitian. This effect pulls a conical intersection into a pair of connected Weyl points, bridged by a Fermi arc. The length of the Fermi arc depends on the strength of non-hermicity. This is a unique feature of non-Hermitian topology with no Hermitian analogue. We predict the existence of Weyl points in molecules which cause anomalous Jahn-Teller effects and fractional quantum number.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源