论文标题
KLR和Schur代数用于曲线和半偏见表示
KLR and Schur algebras for curves and semi-cuspidal representations
论文作者
论文摘要
考虑到平滑的曲线$ c $,我们定义和研究KLR代数和Quiver Schur代数的类似物,在$ c $上,Quiver代数被Torsion Sheaves取代。特别是,它们为某些亲密的对称代数提供了几何实现。当$ c = \ mathbb p^1 $时,曲线schur代数的一种版本被证明是等于kronecker颤抖的任何特征的假想半cuspidal类别的莫里塔。结果,我们认为,人们不应该期望具有合理的奇偶校验丝胎理论。
Given a smooth curve $C$, we define and study analogues of KLR algebras and quiver Schur algebras, where quiver representations are replaced by torsion sheaves on $C$. In particular, they provide a geometric realization for certain affinized symmetric algebras. When $C=\mathbb P^1$, a version of curve Schur algebra turns out to be Morita equivalent to the imaginary semi-cuspidal category of the Kronecker quiver in any characteristic. As a consequence, we argue that one should not expect to have a reasonable theory of parity sheaves for affine quivers.