论文标题

使用2D本地二进制图案的智能电网应用的2D本地二进制图案的直方图后处理设备识别

Appliance identification using a histogram post-processing of 2D local binary patterns for smart grid applications

论文作者

Himeur, Yassine, Alsalemi, Abdullah, Bensaali, Faycal, Amira, Abbes

论文摘要

识别智能电网中的家用电器会导致更好的功率使用管理,并进一步有助于检测设备级别的异常。只有在开发出强大的特征提取方案并具有高度区分智能电网上的不同设备的能力的能力中,才能实现有效的识别。因此,我们在本文中提出了一种新的方法,可以在将功率信号转换为2D空间后提取电源特征,该空间具有更多的编码可能性。随后,提出了改进的局部二进制模式(LBP),该模式依赖于使用后处理阶段提高常规LBP的歧视能力。从2D功率矩阵中提取二元化特征值图(BEVM),然后用于后处理生成的LBP表示。接下来,构建了两个直方图,即向上和向下直方图,然后加入以形成全局直方图。在两个不同的数据集上进行了全面的性能评估,即绿色和使用,其中分别以1 Hz和44000 Hz采样率收集了功率数据。获得的结果揭示了所提出的基于识别性能与其他2D描述符和现有标识框架的基于LBP-BEVM系统的优势。

Identifying domestic appliances in the smart grid leads to a better power usage management and further helps in detecting appliance-level abnormalities. An efficient identification can be achieved only if a robust feature extraction scheme is developed with a high ability to discriminate between different appliances on the smart grid. Accordingly, we propose in this paper a novel method to extract electrical power signatures after transforming the power signal to 2D space, which has more encoding possibilities. Following, an improved local binary patterns (LBP) is proposed that relies on improving the discriminative ability of conventional LBP using a post-processing stage. A binarized eigenvalue map (BEVM) is extracted from the 2D power matrix and then used to post-process the generated LBP representation. Next, two histograms are constructed, namely up and down histograms, and are then concatenated to form the global histogram. A comprehensive performance evaluation is performed on two different datasets, namely the GREEND and WITHED, in which power data were collected at 1 Hz and 44000 Hz sampling rates, respectively. The obtained results revealed the superiority of the proposed LBP-BEVM based system in terms of the identification performance versus other 2D descriptors and existing identification frameworks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源