论文标题

对于不规则采样序列的立方样条平滑补偿

Cubic Spline Smoothing Compensation for Irregularly Sampled Sequences

论文作者

Shi, Jing, Bi, Jing, Liu, Yingru, Xu, Chenliang

论文摘要

复发性神经网络和神经普通差分网络(ODE-RNN)的结合在对不规则观察到的序列进行建模方面有效。尽管ODE在观察间隔之间产生平滑的隐藏状态,但当新观察到达时,RNN会触发隐藏的状态跳跃,从而导致插值不连续性问题。为了解决此问题,我们提出了立方样条平滑补偿,这是一个独立的模块,对ODE-RNN的输出或隐藏状态进行了训练,可以端到端训练。我们得出其分析解决方案,并提供其理论插值误差结合。广泛的实验表明其在ODE-RNN和立方样条插值上的优点。

The marriage of recurrent neural networks and neural ordinary differential networks (ODE-RNN) is effective in modeling irregularly-observed sequences. While ODE produces the smooth hidden states between observation intervals, the RNN will trigger a hidden state jump when a new observation arrives, thus cause the interpolation discontinuity problem. To address this issue, we propose the cubic spline smoothing compensation, which is a stand-alone module upon either the output or the hidden state of ODE-RNN and can be trained end-to-end. We derive its analytical solution and provide its theoretical interpolation error bound. Extensive experiments indicate its merits over both ODE-RNN and cubic spline interpolation.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源