论文标题

神经网络的制图浮雕阴影

Cartographic Relief Shading with Neural Networks

论文作者

Jenny, Bernhard, Heitzler, Magnus, Singh, Dilpreet, Farmakis-Serebryakova, Marianna, Liu, Jeffery Chieh, Hurni, Lorenz

论文摘要

阴影浮雕是一种在地形图上可视化地形的有效方法,尤其是在当地调整照明方向以强调各个地形特征时。但是,数字阴影算法无法完全匹配手工制作的杰作的表现力,这些杰作是由高度专业的制图师通过艰苦的过程创建的。我们使用U-NET神经网络复制手绘浮雕阴影。深度神经网络经过瑞士地形图系列和同一区域的地形模型的手动阴影浮雕图像进行训练。这些网络产生的阴影浮雕非常类似于手绘阴影浮雕艺术。这些网络从手动浮雕阴影中学习了必不可少的设计原理,例如删除不必要的地形细节,在当地调整照明方向以突出单个地形特征,并具有不同的亮度,以强调更大的地面。神经网络阴影是由数字高程模型在几秒钟内产生的,对18个浮雕遮蔽专家的研究发现它们具有高质量。

Shaded relief is an effective method for visualising terrain on topographic maps, especially when the direction of illumination is adapted locally to emphasise individual terrain features. However, digital shading algorithms are unable to fully match the expressiveness of hand-crafted masterpieces, which are created through a laborious process by highly specialised cartographers. We replicate hand-drawn relief shading using U-Net neural networks. The deep neural networks are trained with manual shaded relief images of the Swiss topographic map series and terrain models of the same area. The networks generate shaded relief that closely resemble hand-drawn shaded relief art. The networks learn essential design principles from manual relief shading such as removing unnecessary terrain details, locally adjusting the illumination direction to accentuate individual terrain features, and varying brightness to emphasise larger landforms. Neural network shadings are generated from digital elevation models in a few seconds, and a study with 18 relief shading experts found that they are of high quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源