论文标题

机器学习增强飞行时间质谱分析

Machine-learning-enhanced time-of-flight mass spectrometry analysis

论文作者

Wei, Ye, Varanasi, Rama Srinivas, Schwarz, Torsten, Gomell, Leonie, Zhao, Huan, Larson, David J., Sun, Binhan, Liu, Geng, Chen, Hao, Raabe, Dierk, Gault, Baptiste

论文摘要

质谱是一种普遍的方法,可以解决材料的组成部分。原子和分子从材料中去除并收集,随后,关键步骤是根据其质量和相对同位素丰度所形成的模式来推断其正确的身份。但是,此标识步骤仍然主要取决于个人用户的专业知识,使其标准化具有挑战性,并阻碍了有效的数据处理。在这里,我们介绍了一种方法,该方法利用现代机器学习技术在微秒内识别飞行时间质谱的峰值模式,从而超过了人类用户而不会丧失准确性。我们的方法是通过不同飞行时间质谱(TOF-MS)技术产生的质谱进行了交叉验证的,为TOF-MS社区提供了开源的,智能的质谱分析。

Mass spectrometry is a widespread approach to work out what are the constituents of a material. Atoms and molecules are removed from the material and collected, and subsequently, a critical step is to infer their correct identities based from patterns formed in their mass-to-charge ratios and relative isotopic abundances. However, this identification step still mainly relies on individual user's expertise, making its standardization challenging, and hindering efficient data processing. Here, we introduce an approach that leverages modern machine learning technique to identify peak patterns in time-of-flight mass spectra within microseconds, outperforming human users without loss of accuracy. Our approach is cross-validated on mass spectra generated from different time-of-flight mass spectrometry(ToF-MS) techniques, offering the ToF-MS community an open-source, intelligent mass spectra analysis.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源