论文标题
在$ q $ - 标准$ a_2^{(2)} $ - 模块的主要特征
On $q$-series for principal characters of standard $A_2^{(2)}$-modules
论文作者
论文摘要
我们介绍了所有标准(即,可集成和最高权重)的主要字符的总和,用于仿射lie代数$ a_2^{(2)} $的不可减至的模块。我们使用五对已知的贝利对的修改;其中三个足以获得所有必要的主要角色。然后,我们使用Bailey Lattice的技术适当扩展,以包含其中一个参数的“距离”值,即$ i $。我们证明了总和如何根据模块6的水平分为六个家庭,这证实了McLaughlin的猜想。
We present sum-sides for principal characters of all standard (i.e., integrable and highest-weight) irreducible modules for the affine Lie algebra $A_2^{(2)}$. We use modifications of five known Bailey pairs; three of these are sufficient to obtain all the necessary principal characters. We then use the technique of Bailey lattice appropriately extended to include "out-of-bounds" values of one of the parameters, namely, $i$. We demonstrate how the sum-sides break into six families depending on the level of the modules modulo 6, confirming a conjecture of McLaughlin--Sills.