论文标题
一种数据驱动的方法来限制Kelt-9B的大气温度结构
A data-driven approach to constraining the atmospheric temperature structure of KELT-9b
论文作者
论文摘要
语境。在观察上限制外部行星的大气温度压力(TP)曲线是改善行星大气模型的重要一步,进一步使人们能够通过固体地面上的透射和发射光谱进行透射和发射光谱,将光谱特征的检测和原子和分子丰富度的测量进行测量。目标。目的是通过将合成光谱拟合到观察到的h $α$和h $β$线条来限制超热木星kelt-9b的TP曲线,并确定为什么自洽行星TP模型无法符合观测值。方法。我们构造了126个一维TP剖面,以改变下部和上部大气温度以及温度升高的位置和梯度。对于每个TP配置文件,我们使用多云的辐射转移代码来计算H $α$和H $β$线的传输光谱,这是自一介绍的,这是非本地热力学平衡(NLTE)效应的。结果。 TP曲线最能适应该观测值的特征是大气温度为10000-11000 K,并且在高于10 $^{-4} $ bar的压力下的倒置温度轮廓。我们发现,局部热力学平衡(LTE)的假设导致高估了激发氢的水平数量的数量级,从而显着高估了Balmer线的强度。最佳拟合模型的化学成分表明,高大气温度很可能是由金属光电离驱动的,而FEII和FEIII的压力低于10 $^{-6} $ bar的压力,可能使后者可检测到。结论。建模超热木星的大气需要考虑金属光电子化。 [简略]
Context. Observationally constraining the atmospheric temperature-pressure (TP) profile of exoplanets is an important step forward for improving planetary atmosphere models, further enabling one to place the detection of spectral features and the measurement of atomic and molecular abundances through transmission and emission spectroscopy on solid ground. Aims. The aim is to constrain the TP profile of the ultra-hot Jupiter KELT-9b by fitting synthetic spectra to the observed H$α$ and H$β$ lines and identify why self-consistent planetary TP models are unable to fit the observations. Methods. We construct 126 one-dimensional TP profiles varying the lower and upper atmospheric temperatures, as well as the location and gradient of the temperature rise. For each TP profile, we compute transmission spectra of the H$α$ and H$β$ lines employing the Cloudy radiative transfer code, which self-consistently accounts for non-local thermodynamic equilibrium (NLTE) effects. Results. The TP profiles leading to best fit the observations are characterised by an upper atmospheric temperature of 10000-11000 K and by an inverted temperature profile at pressures higher than 10$^{-4}$ bar. We find that the assumption of local thermodynamic equilibrium (LTE) leads to overestimate the level population of excited hydrogen by several orders of magnitude, and hence to significantly overestimate the strength of the Balmer lines. The chemical composition of the best fitting models indicate that the high upper atmospheric temperature is most likely driven by metal photoionisation and that FeII and FeIII have comparable abundances at pressures lower than 10$^{-6}$ bar, possibly making the latter detectable. Conclusions. Modelling the atmospheres of ultra-hot Jupiters requires one to account for metal photoionisation. [abridged]