论文标题

使用深度学习从胸部计算机断层扫描(CT)图像中识别Covid-19的图像:比较Cognex VisionPro深度学习1.0软件与开源卷积神经网络

Identification of images of COVID-19 from Chest Computed Tomography (CT) images using Deep learning: Comparing COGNEX VisionPro Deep Learning 1.0 Software with Open Source Convolutional Neural Networks

论文作者

Sarkar, Arjun, Vandenhirtz, Joerg, Nagy, Jozsef, Bacsa, David, Riley, Mitchell

论文摘要

为了测试感染Covid-19的患者,以及RT-PCR测试,使用了胸部放射学图像。为了从放射学图像中检测COVID-19,许多组织都提出了深度学习的使用。滑铁卢大学和达尔文奈大学设计了自己的深度学习模型Covidnet-CT,以从受感染的胸部CT图像中检测Covid-19。此外,他们从中国国家生物信息中心收集的CT图像中引入了CT图像数据集COVIDX-CT。 COVIDX-CT在1,489例患者病例中包含104,009个CT图像切片。在通过使用Cognex VisionPro深度学习软件1.0从胸部X射线图像鉴定CoVID-19的结果后,我们测试了该软件在CT图像中识别Covid-19的性能。 Cognex深度学习软件:VisionPro Deep Learning是一个深度学习软件,用于从工厂自动化到生命科学的各个领域。在这项研究中,我们对来自Covidx-CT数据集的82,818个胸部CT训练和验证图像进行了训练,分别是3级类别(正常,肺炎和Covid-19),然后与Covidnet-ct和Art Deep-Seep Seep-Seep-Seep-Seep Seeld-Seep Seeld-Seep Seeld-Soneps oper-Snoce-Sentecs进行了21,191个测试图像的分类结果测试。另外,我们测试如何减少训练集中的图像数量影响软件的结果。总体而言,即使训练集中的图像数量大大减少,VisionPro深度学习以F评分超过99%的速度可获得最佳结果。该软件绝不是检测Covid-19的独立解决方案,可以帮助放射科医生和临床医生使用深度学习的全部潜力来更快,更可理解的诊断,而无需先前以任何编程语言进行编码。

For testing patients infected with COVID-19, along with RT-PCR testing, chest radiology images are being used. For the detection of COVID-19 from radiology images, many organizations are proposing the use of Deep Learning. University of Waterloo and DarwinAI, have designed their own Deep Learning model COVIDNet-CT to detect COVID-19 from infected chest CT images. Additionally, they have introduced a CT image dataset COVIDx-CT, from CT images collected by the China National Center for Bioinformation. COVIDx-CT contains 104,009 CT image slices across 1,489 patient cases. After obtaining remarkable results on the identification of COVID-19 from chest X-ray images by using the COGNEX VisionPro Deep Learning Software 1.0 this time we test the performance of the software on the identification of COVID-19 from CT images. COGNEX Deep Learning Software: VisionPro Deep Learning, is a Deep Learning software that is used across various domains ranging from factory automation to life sciences. In this study, we train the classification model on 82,818 chest CT training and validation images from the COVIDx-CT dataset in 3 classes - normal, pneumonia, and COVID-19 and then test the results of the classification on the 21,191 test images are compared with the results of COVIDNet-CT and various other state of the art Deep Learning models from the open-source community. Also, we test how reducing the number of images in the training set effects the results of the software. Overall, VisionPro Deep Learning gives the best results with F-scores over 99%, even as the number of images in the training set is reduced significantly. This software is by no means a stand-alone solution in the detection of COVID-19 but can aid radiologists and clinicians in achieving faster and understandable diagnosis using the full potential of Deep Learning, without the prerequisite of having to code in any programming language.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源