论文标题

3D打印时间序列数据的分类方法评估

An Evaluation of Classification Methods for 3D Printing Time-Series Data

论文作者

Mahato, Vivek, Obeidi, Muhannad Ahmed, Brabazon, Dermot, Cunningham, Padraig

论文摘要

由于生成的数据大量以及可以挖掘这些数据以控制结果,因此增材制造公司为机器学习提供了一个很好的应用领域。在本文中,我们介绍了有关在金属3D打印过程中代表融化池温度的红外时间序列数据进行分类的初步工作。我们的最终目标是使用这些数据来预测过程结果(例如硬度,孔隙度,表面粗糙度)。在此处介绍的工作中,我们简单地表明,该数据中有一个信号,可用于分类AM过程的不同组件和阶段。与其他有关时间序列分类的机器学习研究一致,我们使用K-Nearest邻居分类器。我们提出的结果表明,与此类3D打印数据的替代方案相比,动态时间扭曲是一个有效的距离度量。

Additive Manufacturing presents a great application area for Machine Learning because of the vast volume of data generated and the potential to mine this data to control outcomes. In this paper we present preliminary work on classifying infrared time-series data representing melt-pool temperature in a metal 3D printing process. Our ultimate objective is to use this data to predict process outcomes (e.g. hardness, porosity, surface roughness). In the work presented here we simply show that there is a signal in this data that can be used for the classification of different components and stages of the AM process. In line with other Machine Learning research on time-series classification we use k-Nearest Neighbour classifiers. The results we present suggests that Dynamic Time Warping is an effective distance measure compared with alternatives for 3D printing data of this type.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源