论文标题

适当的火焰阵线模型的适应性和渐近性

Well-posedness and asymptotics of a coordinate-free model of flame fronts

论文作者

Ambrose, David M., Hadadifard, Fazel, Wright, J. Douglas

论文摘要

我们研究了Frankel和Sivashinsky引入的无坐标火焰阵线模型;该模型具有一个参数$α$,它与前部的不稳定有关。我们首先证明了无坐标模型的短时良好性,对于$α> 0的任何值。$ $,我们然后说,接近阈值$α\约1,$该解决方案将任意接近弱的非线性kuramoto-sivashinskin(ks)方程的解决方案,只要初始值很长。

We investigate a coordinate-free model of flame fronts introduced by Frankel and Sivashinsky; this model has a parameter $α$ which relates to how unstable the front might be. We first prove short-time well-posedness of the coordinate-free model, for any value of $α>0.$ We then argue that near the threshold $α\approx 1,$ the solution stays arbitrarily close to the solution of the weakly nonlinear Kuramoto--Sivashinsky (KS) equation, as long as the initial values are close.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源