论文标题

PIX2PROF:通过深层自然语言“字幕”模型快速从星系图像中快速提取顺序信息

Pix2Prof: fast extraction of sequential information from galaxy imagery via a deep natural language 'captioning' model

论文作者

Smith, Michael J., Arora, Nikhil, Stone, Connor, Courteau, Stéphane, Geach, James E.

论文摘要

我们提出了“ Pix2prof”,这是一个深度学习模型,可以消除提取星系轮廓时采取的任何手动步骤。我们认为,任何形式的星系概况在概念上都类似于自然语言图像标题。这个想法使我们能够利用自然语言处理领域的图像字幕方法,因此我们将pix2prof设计为适用于星系概况推断的浮点序列“字幕”模型。我们通过近似包含多个手动步骤的星系表面亮度(SB)剖面拟合方法来证明该技术。 PIX2PROF在Intel Xeon E5 2650 V3 CPU上每秒$ \ sim $ 1图像,在手动交互方法的速度上提高了两个以上的数量级。至关重要的是,Pix2Prof不需要手动交互,并且由于Galaxy曲线估计是一个令人尴尬的并行问题,因此我们可以通过同时运行许多PIX2PROF实例来进一步增加吞吐量。从角度来看,Pix2Prof将花费一个小时的时间才能在单个NVIDIA DGX-2系统上以$ 10^5 $的星系推断配置文件。一个人类专家大约需要两年才能完成相同的任务。诸如此类的自动化方法将加速对下一代大型天空调查的分析,预计将产生数亿个目标。在这种情况下,所有手动方法 - 即使是涉及大量专家的方法 - 都将是不切实际的。

We present 'Pix2Prof', a deep learning model that can eliminate any manual steps taken when extracting galaxy profiles. We argue that a galaxy profile of any sort is conceptually similar to a natural language image caption. This idea allows us to leverage image captioning methods from the field of natural language processing, and so we design Pix2Prof as a float sequence 'captioning' model suitable for galaxy profile inference. We demonstrate the technique by approximating a galaxy surface brightness (SB) profile fitting method that contains several manual steps. Pix2Prof processes $\sim$1 image per second on an Intel Xeon E5 2650 v3 CPU, improving on the speed of the manual interactive method by more than two orders of magnitude. Crucially, Pix2Prof requires no manual interaction, and since galaxy profile estimation is an embarrassingly parallel problem, we can further increase the throughput by running many Pix2Prof instances simultaneously. In perspective, Pix2Prof would take under an hour to infer profiles for $10^5$ galaxies on a single NVIDIA DGX-2 system. A single human expert would take approximately two years to complete the same task. Automated methodology such as this will accelerate the analysis of the next generation of large area sky surveys expected to yield hundreds of millions of targets. In such instances, all manual approaches -- even those involving a large number of experts -- will be impractical.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源