论文标题
约瑟夫森电路的能量参与量化
Energy-participation quantization of Josephson circuits
论文作者
论文摘要
结合非线性设备(例如约瑟夫森连接)的超导微波电路是新兴量子技术的领先平台之一。提高电路复杂性进一步需要有效的方法来计算和优化多模式分布式量子电路中光谱,非线性相互作用和耗散的方法。在这里,我们提出了一种基于电磁模式下耗散元件或非线性元件的能量参与比(EPR)的方法。 EPR(一个零和一个之间的数字)量化了每个元素中一个模式的能量的数量。它遵守普遍的约束 - 无论是非线性元素的电路拓扑和性质如何,磁带。元素的EPR是根据线性化电路的独特,有效的电磁本质模拟计算得出的,包括有损元素。它们的集合是确定系统量子哈密顿量的关键输入。该方法提供了一个直观且易于使用的工具,可以量化多开关电路。它特别适合找到弱的静脉系统的哈密顿量和耗散参数,例如与谐振器耦合的Transmon Qubits或Josephson传输线。我们在各种约瑟夫森电路上对这种方法进行了实验测试,并在几个percents中证明了非线性耦合和模态汉密尔顿参数的一致性,跨越了十几个样本,跨越了五个幅度的能量。
Superconducting microwave circuits incorporating nonlinear devices, such as Josephson junctions, are one of the leading platforms for emerging quantum technologies. Increasing circuit complexity further requires efficient methods for the calculation and optimization of the spectrum, nonlinear interactions, and dissipation in multi-mode distributed quantum circuits. Here, we present a method based on the energy-participation ratio (EPR) of a dissipative or nonlinear element in an electromagnetic mode. The EPR, a number between zero and one, quantifies how much of the energy of a mode is stored in each element. It obeys universal constraints--valid regardless of the circuit topology and nature of the nonlinear elements. The EPR of the elements are calculated from a unique, efficient electromagnetic eigenmode simulation of the linearized circuit, including lossy elements. Their set is the key input to the determination of the quantum Hamiltonian of the system. The method provides an intuitive and simple-to-use tool to quantize multi-junction circuits. It is especially well-suited for finding the Hamiltonian and dissipative parameters of weakly anharmonic systems, such as transmon qubits coupled to resonators, or Josephson transmission lines. We experimentally tested this method on a variety of Josephson circuits, and demonstrated agreement within several percents for nonlinear couplings and modal Hamiltonian parameters, spanning five-orders of magnitude in energy, across a dozen samples.