论文标题
正常矩阵的浆果,条目和光谱半径
Berry-Esseen bounds and moderate deviations for the norm, entries and spectral radius of products of positive random matrices
论文作者
论文摘要
令$(g_ {n})_ {n \ geq 1} $为一系列独立且分布相同的正随机$ d \ times d $矩阵,并考虑矩阵product $ g_n:= g_n \ ldots g_1 $。在适当的条件下,我们建立了浆果界的中心限制率定理和cramér类型中等偏差扩展的范围,对于矩阵norm $ \ | $ g_n $的g_n \ | $(i,j)$ - th entry $ g_n^{i,j} $,以及其频谱半径$ρ(g_n)$。
Let $(g_{n})_{n\geq 1}$ be a sequence of independent and identically distributed positive random $d\times d$ matrices and consider the matrix product $G_n: = g_n \ldots g_1$. Under suitable conditions, we establish the Berry-Esseen bounds on the rate of convergence in the central limit theorem and moderate deviation expansions of Cramér type, for the matrix norm $\| G_n \|$ of $G_n$, for its $(i,j)$-th entry $G_n^{i,j}$, and the and for its spectral radius $ρ(G_n)$.