论文标题

不确定事件数据的有效时间和空间表示

Efficient Time and Space Representation of Uncertain Event Data

论文作者

Pegoraro, Marco, Uysal, Merih Seran, van der Aalst, Wil M. P.

论文摘要

流程挖掘是一门学科,涉及对操作过程的执行数据的分析,从事件数据中提取模型,测量事件数据和规范模型之间的符合性以及进程的所有方面。大多数方法都假定事件数据准确捕获行为。但是,这在许多应用程序中都不现实:数据可能包含不确定性,这是由于记录,不精确测量和其他因素而产生的。最近,已经开发了新的方法来分析包含不确定性的事件数据。这些技术突出地依赖于通过基于图的模型明确捕获不确定性来表示不确定的事件数据。在本文中,我们介绍了一种新方法,以有效计算不确定过程跟踪中包含的行为的图表表示。我们介绍了新的算法,证明了其渐近时间复杂性,并显示了实验结果,以突出行为图构造的刻板级性能改进。

Process mining is a discipline which concerns the analysis of execution data of operational processes, the extraction of models from event data, the measurement of the conformance between event data and normative models, and the enhancement of all aspects of processes. Most approaches assume that event data is accurately capture behavior. However, this is not realistic in many applications: data can contain uncertainty, generated from errors in recording, imprecise measurements, and other factors. Recently, new methods have been developed to analyze event data containing uncertainty; these techniques prominently rely on representing uncertain event data by means of graph-based models explicitly capturing uncertainty. In this paper, we introduce a new approach to efficiently calculate a graph representation of the behavior contained in an uncertain process trace. We present our novel algorithm, prove its asymptotic time complexity, and show experimental results that highlight order-of-magnitude performance improvements for the behavior graph construction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源