论文标题

在嘈杂的超导量子处理器上进行可伸缩量子计算的随机编译

Randomized compiling for scalable quantum computing on a noisy superconducting quantum processor

论文作者

Hashim, Akel, Naik, Ravi K., Morvan, Alexis, Ville, Jean-Loup, Mitchell, Bradley, Kreikebaum, John Mark, Davis, Marc, Smith, Ethan, Iancu, Costin, O'Brien, Kevin P., Hincks, Ian, Wallman, Joel J., Emerson, Joseph, Siddiqi, Irfan

论文摘要

量子处理器上成功实现算法的实现依赖于对量子位(Qubits)的准确控制来执行逻辑门操作。在这个嘈杂的中间尺度量子(NISQ)计算时代,在Qubits控制中,系统的错误校准,漂移和串扰可能会导致一种连贯的误差形式,没有经典的类似物。相干错误以不可预测的方式严重限制了量子算法的性能,而减轻其影响对于实现可靠的量子计算是必要的。此外,通过随机基准测试和相关协议测量的平均错误率对相干错误的全部影响不敏感,因此不能可靠地预测量子算法的全球性能,使我们没有准备好验证未来大规模量子计算的准确性。随机编译是一种协议,旨在通过将相干误差转换为随机噪声来克服这些性能限制,从而大大降低了量子算法中不可预测的错误,并从通过周期基准测试中测得的误差率中对算法性能的准确预测进行了准确的预测。在这项工作中,我们在四量量子傅立叶变换算法和超导量子处理器上可变深度的随机电路下展示了显着的性能增长。此外,我们使用实验测量的错误率准确地预测算法性能。我们的结果表明,随机编译可用于利用和预测现代噪声量子处理器的功能,为可扩展的量子计算铺平了前进的方向。

The successful implementation of algorithms on quantum processors relies on the accurate control of quantum bits (qubits) to perform logic gate operations. In this era of noisy intermediate-scale quantum (NISQ) computing, systematic miscalibrations, drift, and crosstalk in the control of qubits can lead to a coherent form of error which has no classical analog. Coherent errors severely limit the performance of quantum algorithms in an unpredictable manner, and mitigating their impact is necessary for realizing reliable quantum computations. Moreover, the average error rates measured by randomized benchmarking and related protocols are not sensitive to the full impact of coherent errors, and therefore do not reliably predict the global performance of quantum algorithms, leaving us unprepared to validate the accuracy of future large-scale quantum computations. Randomized compiling is a protocol designed to overcome these performance limitations by converting coherent errors into stochastic noise, dramatically reducing unpredictable errors in quantum algorithms and enabling accurate predictions of algorithmic performance from error rates measured via cycle benchmarking. In this work, we demonstrate significant performance gains under randomized compiling for the four-qubit quantum Fourier transform algorithm and for random circuits of variable depth on a superconducting quantum processor. Additionally, we accurately predict algorithm performance using experimentally-measured error rates. Our results demonstrate that randomized compiling can be utilized to leverage and predict the capabilities of modern-day noisy quantum processors, paving the way forward for scalable quantum computing.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源