论文标题

由受访者驱动的抽样的邻里引导程序

Neighbourhood Bootstrap for Respondent-Driven Sampling

论文作者

Yauck, Mamadou, Moodie, Erica E. M., Apelian, Herak, Fourmigue, Alain, Grace, Daniel, Hart, Trevor A., Lambert, Gilles, Cox, Joseph

论文摘要

受访者驱动的抽样(RDS)是一种链接追踪抽样的形式,这是一种用于“难以到达”人群的抽样技术,旨在利用个人的社会关系来吸引潜在的参与者。尽管方法论重点仅限于人口比例的估计,但对RDS的不确定性的估计越来越感兴趣,因为最近的发现表明大多数差异估计器低估了可变性。最近,Baraff等。 (2016)提出了基于重新采样RDS募集树的\ textit {Tree Bootstrap}方法,并经验表明,该方法的表现优于当前的Bootstrap方法。但是,一些发现表明,树自举(严重)高估了不确定性。在本文中,我们提出了\ textIt {neighboright} bootstrap方法,用于量化RDS中的不确定性。在某些条件下,我们证明了我们方法的一致性,并通过仿真研究在现实的RDS采样假设下研究了其有限的样本性能。

Respondent-Driven Sampling (RDS) is a form of link-tracing sampling, a sampling technique used for `hard-to-reach' populations that aims to leverage individuals' social relationships to reach potential participants. While the methodological focus has been restricted to the estimation of population proportions, there is a growing interest in the estimation of uncertainty for RDS as recent findings suggest that most variance estimators underestimate variability. Recently, Baraff et al. (2016) proposed the \textit{tree bootstrap} method based on resampling the RDS recruitment tree, and empirically showed that this method outperforms current bootstrap methods. However, some findings suggest that the tree bootstrap (severely) overestimates uncertainty. In this paper, we propose the \textit{neighbourhood} bootstrap method for quantifiying uncertainty in RDS. We prove the consistency of our method under some conditions and investigate its finite sample performance, through a simulation study, under realistic RDS sampling assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源