论文标题

用于识别模拟电路布局的层次对称约束的一般方法

A general approach for identifying hierarchical symmetry constraints for analog circuit layout

论文作者

Kunal, Kishor, Poojary, Jitesh, Dhar, Tonmoy, Madhusudan, Meghna, Harjani, Ramesh, Sapatnekar, Sachin S.

论文摘要

模拟布局合成需要在电路网络列表中匹配并对称放置的一些元素。但是,一组对称是非常特定的电路,并且一种适用于各种电路的多功能算法是难以捉摸的。本文提出了一种对对称约束自动生成的一般方法,并应用这些约束来指导自动布局综合。虽然先前的方法仅限于识别简单的对称性,但提出的方法在层次上运行,并使用基于图的算法在电路中提取多个对称轴。该算法的重要组成部分是其识别重复结构阵列的能力。在某些电路中,重复的结构不是完美的复制品,只能通过近似图形匹配找到。为此目的开发了基于快速图神经网络的快速神经网络方法,基于评估图编辑距离。该算法的实用性在各种电路上进行了证明,包括操作放大器,数据转换器,均衡器和低噪声放大器。

Analog layout synthesis requires some elements in the circuit netlist to be matched and placed symmetrically. However, the set of symmetries is very circuit-specific and a versatile algorithm, applicable to a broad variety of circuits, has been elusive. This paper presents a general methodology for the automated generation of symmetry constraints, and applies these constraints to guide automated layout synthesis. While prior approaches were restricted to identifying simple symmetries, the proposed method operates hierarchically and uses graph-based algorithms to extract multiple axes of symmetry within a circuit. An important ingredient of the algorithm is its ability to identify arrays of repeated structures. In some circuits, the repeated structures are not perfect replicas and can only be found through approximate graph matching. A fast graph neural network based methodology is developed for this purpose, based on evaluating the graph edit distance. The utility of this algorithm is demonstrated on a variety of circuits, including operational amplifiers, data converters, equalizers, and low-noise amplifiers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源