论文标题

深层网络中的光谱分解,用于分割动态医学图像

Spectral Decomposition in Deep Networks for Segmentation of Dynamic Medical Images

论文作者

Piedra, Edgar A. Rios, Mardani, Morteza, Ong, Frank, Nakarmi, Ukash, Cheng, Joseph Y., Vasanawala, Shreyas

论文摘要

动态对比增强磁共振成像(DCE-MRI)是一种常规使用的多相技术,通常用于临床实践。 DCE和类似的动态医疗数据数据集倾向于包含有关空间和时间成分的冗余信息,这些信息可能与检测感兴趣的对象无关,并导致不必要的复杂计算机模型具有较长的训练时间,由于嘈杂的异质数据的丰富性,在测试时也可能在测试时间不足。这项工作试图通过确定空间和频谱组件中的冗余信息来提高深网的训练效果和性能,并表明可以维持分割精度的性能并有可能提高。报道的实验包括评估由小儿DCE患者腹部图像组成的异质数据集上的训练/测试功效,表明大幅度的数据降低(高于80%)可以保留分段模型的动态信息和性能,同时有效地抑制了图像的噪声和不知情的部分。

Dynamic contrast-enhanced magnetic resonance imaging (DCE- MRI) is a widely used multi-phase technique routinely used in clinical practice. DCE and similar datasets of dynamic medical data tend to contain redundant information on the spatial and temporal components that may not be relevant for detection of the object of interest and result in unnecessarily complex computer models with long training times that may also under-perform at test time due to the abundance of noisy heterogeneous data. This work attempts to increase the training efficacy and performance of deep networks by determining redundant information in the spatial and spectral components and show that the performance of segmentation accuracy can be maintained and potentially improved. Reported experiments include the evaluation of training/testing efficacy on a heterogeneous dataset composed of abdominal images of pediatric DCE patients, showing that drastic data reduction (higher than 80%) can preserve the dynamic information and performance of the segmentation model, while effectively suppressing noise and unwanted portion of the images.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源