论文标题
融合规则定理的证明
A proof of the fusion rules theorem
论文作者
论文摘要
我们证明,在顶点操作员代数上与某些可允许的模块相关的交织算子的空间与同一数据定义的三点有理曲线上的保形块向量空间的商同构。这为Frenkel和Zhu的融合提供了一个新的证明和替代版本,该版本根据某些双模型在Zhu的代数上的尺寸而言,没有理性的假设。
We prove that the space of intertwining operators associated with certain admissible modules over vertex operator algebras is isomorphic to a quotient of the vector space of conformal blocks on a three-pointed rational curve defined by the same data. This provides a new proof and alternative version of Frenkel and Zhu's fusion rules theorem in terms of the dimension of certain bimodules over Zhu's algebra, without the assumption of rationality.