论文标题
音调晶体晶格中热传输的原子尺度光谱控制
Atomic scale spectral control of thermal transport in phononic crystal superlattices
论文作者
论文摘要
我们介绍了(lamno $ _3 $)$ _ m $/(srmno $ _3 $)$ _ n $ superlattices(lmo/smo sls),具有单个层$ m的厚度$ m,n = 3-10 \ $ u.c.厚度比$ m/n = 1,2 $。光学瞬态热反射率测量结果揭示了$ m/n = 1 $的SLS之间的热导率明显差异,而SLS的$ m/n = 2 $。最先进的电子显微镜技术和Ab-Initio密度功能计算使我们能够将这种差异的起源分配给缺席($ m/n = 1 $)或存在($ m/n = 2 $)在LMO层内的空间周期性,静态氧气氧气八人体旋转(OOR)。实验数据分析表明,LMO/SMO接口的有效导热率从$ 0.3 $ gw/m $^2 $^2 $ k for $ m/n = 2 $ sls an n = 2 $ sls and oor ting oor to $ 1.8 $ gw/m $ $ $^2 $^2 $^2 $^2 $^$ m/n = 1 $ sls,而没有OOR。一个指导性的晶格动力学模型合理化了我们的实验发现,这是由于$ m/n = 1 $的连贯声子传输的结果,而在SLS中,$ m/n = 2 $的相干声子阻止。我们简要讨论了将这些结果用于晶体声子绝缘体的原子尺度工程的可能性。该提案的热材料的热电阻率超过了无定形极限,尽管声子仍然相干地传播。
We present experimental and theoretical investigations of phonon thermal transport in (LaMnO$_3$)$_m$/(SrMnO$_3$)$_n$ superlattices (LMO/SMO SLs) with the thickness of individual layers $m,n = 3 - 10\;$ u.c. and the thickness ratio $m/n = 1, 2$. Optical transient thermal reflectivity measurements reveal a pronounced difference in the thermal conductivity between SLs with $m/n = 1$, and SLs with $m/n = 2$. State-of-the art electron microscopy techniques and ab-initio density functional calculations enables us to assign the origin of this difference to the absence ($m/n = 1$) or presence ($m/n = 2$) of spatially periodic, static oxygen octahedral rotation (OOR) inside the LMO layers. The experimental data analysis shows that the effective thermal conductance of the LMO/SMO interfaces strongly changes from $0.3$ GW/m$^2$K for $m/n = 2$ SLs with OOR to a surprisingly large value of $1.8$ GW/m$^2$K for $m/n = 1$ SLs without OOR. An instructive lattice dynamical model rationalizes our experimental findings as a result of coherent phonon transmission for $m/n = 1$ versus coherent phonon blocking in SLs with $m/n = 2$. We briefly discuss the possibilities to exploit these results for atomic-scale engineering of a crystalline phonon insulator. The thermal resistivity of this proposal for a thermal metamaterial surpasses the amorphous limit, although phonons still propagate coherently.