论文标题

Autodse:使软件程序员能够设计高效的FPGA加速器

AutoDSE: Enabling Software Programmers to Design Efficient FPGA Accelerators

论文作者

Sohrabizadeh, Atefeh, Yu, Cody Hao, Gao, Min, Cong, Jason

论文摘要

在数据中心中采用FPGA作为加速器正在成为定制计算的主流,但是FPGA很难编程为软件程序员创建陡峭的学习曲线这一事实。即使在高级合成(HLS)的帮助下,加速器设计人员仍然必须手动执行代码重建和繁琐的参数调整才能实现最佳性能。尽管现有工作以自动化有效加速器的设计来利用许多学习模型,但现代HLS工具的不可预测性成为他们保持高准确性的主要障碍。为了解决这个问题,我们提出了一个自动化的DSE框架-Autodse-利用瓶颈引导的坐标优化器系统地找到更好的设计点。 Autodse在每个步骤中都检测到设计的瓶颈,并专注于高影响参数以克服它。实验结果表明,Autodse能够识别出在几何平均值上达到的设计点,即在一个Machsuite和Rodinia基准测试的CPU核心上加速19.9倍。与Xilinx Vitis库中手动优化的HLS视觉内核相比,Autodse可以将其优化典礼降低26.38倍,同时达到相似的性能。平均而言,我们平均而言,我们正在通过使软件程序员能够设计有效的FPGA加速器来使可定制计算的计算机民主化。

Adopting FPGA as an accelerator in datacenters is becoming mainstream for customized computing, but the fact that FPGAs are hard to program creates a steep learning curve for software programmers. Even with the help of high-level synthesis (HLS), accelerator designers still have to manually perform code reconstruction and cumbersome parameter tuning to achieve the optimal performance. While many learning models have been leveraged by existing work to automate the design of efficient accelerators, the unpredictability of modern HLS tools becomes a major obstacle for them to maintain high accuracy. To address this problem, we propose an automated DSE framework-AutoDSE- that leverages a bottleneck-guided coordinate optimizer to systematically find a better design point. AutoDSE detects the bottleneck of the design in each step and focuses on high-impact parameters to overcome it. The experimental results show that AutoDSE is able to identify the design point that achieves, on the geometric mean, 19.9x speedup over one CPU core for Machsuite and Rodinia benchmarks. Compared to the manually optimized HLS vision kernels in Xilinx Vitis libraries, AutoDSE can reduce their optimization pragmas by 26.38x while achieving similar performance. With less than one optimization pragma per design on average, we are making progress towards democratizing customizable computing by enabling software programmers to design efficient FPGA accelerators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源