论文标题

与比率依赖性捕食者模型的Stefan条件的自由边界问题

A Free Boundary Problem with a Stefan Condition for a Ratio-dependent Predator-prey Model

论文作者

Liu, Lingyu

论文摘要

在本文中,我们研究了一个依赖于比率的捕食者 - 捕食模型,该模型在一个维度栖息地上引起了猎物和捕食者的自由边界。我们研究了这两个物种的长时间行为,并证明了散布的变化二分法,即,随着T到达无穷大,猎物和捕食者都成功地传播到整个空间,并在新环境中生存,或者它们在有限的区域内传播并最终消失。然后获得了管理扩散和消失的标准。最后,当发生扩散时,我们为H(t)的渐近扩散速度提供了一些估计。

In this paper we study a ratio-dependent predator-prey model with a free boundary causing by both prey and predator over a one dimensional habitat. We study the long time behaviors of the two species and prove a spreading-vanishing dichotomy, namely, as t goes to infinity, both prey and predator successfully spread to the whole space and survive in the new environment, or they spread within a bounded area and die out eventually. Then the criteria governing spreading and vanishing are obtained. Finally, when spreading occurs, we provide some estimates to the asymptotic spreading speed of h(t).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源