论文标题
与比率依赖性捕食者模型的Stefan条件的自由边界问题
A Free Boundary Problem with a Stefan Condition for a Ratio-dependent Predator-prey Model
论文作者
论文摘要
在本文中,我们研究了一个依赖于比率的捕食者 - 捕食模型,该模型在一个维度栖息地上引起了猎物和捕食者的自由边界。我们研究了这两个物种的长时间行为,并证明了散布的变化二分法,即,随着T到达无穷大,猎物和捕食者都成功地传播到整个空间,并在新环境中生存,或者它们在有限的区域内传播并最终消失。然后获得了管理扩散和消失的标准。最后,当发生扩散时,我们为H(t)的渐近扩散速度提供了一些估计。
In this paper we study a ratio-dependent predator-prey model with a free boundary causing by both prey and predator over a one dimensional habitat. We study the long time behaviors of the two species and prove a spreading-vanishing dichotomy, namely, as t goes to infinity, both prey and predator successfully spread to the whole space and survive in the new environment, or they spread within a bounded area and die out eventually. Then the criteria governing spreading and vanishing are obtained. Finally, when spreading occurs, we provide some estimates to the asymptotic spreading speed of h(t).