论文标题

小伍德 - 里查森(Littlewood-Richardson)的koornwinder多项式规则

A Littlewood-Richardson rule for Koornwinder polynomials

论文作者

Yamaguchi, Kohei

论文摘要

Koornwinder多项式是$ Q $ - 接地多项式,配备了额外的五个参数和$ b C_N $ -Type Weyl grout Symmetry,这是由Koornwinder(1992)作为Askey-Wilson polynomials的多元类似物引入的。现在,它们被理解为与$(c^\ vee_n,c_n)$ offine root系统相关的麦克唐纳(MacDonald)多项式,这是通过麦克唐纳德·奇德尼克(MacDonald-Cherednik)的双偏爱hecke代数的理论。在本文中,我们给出了Koornwinder多项式的Littlewood-Richardson系数的明确公式,即产品的结构常数为不变多项式。我们的公式是天然的$(c^\ vee_n,c_n)$ - YIP的Alcove-Walk-Walk-walk公式(2012)的类似物,在减少仿射根系的情况下给出了。

Koornwinder polynomials are $q$-orthogonal polynomials equipped with extra five parameters and the $B C_n$-type Weyl group symmetry, which were introduced by Koornwinder (1992) as multivariate analogue of Askey-Wilson polynomials. They are now understood as the Macdonald polynomials associated to the affine root system of type $(C^\vee_n,C_n)$ via the Macdonald-Cherednik theory of double affine Hecke algebras. In this paper we give explicit formulas of Littlewood-Richardson coefficients for Koornwinder polynomials, i.e., the structure constants of the product as invariant polynomials. Our formulas are natural $(C^\vee_n,C_n)$-analogue of Yip's alcove-walk formulas (2012) which were given in the case of reduced affine root systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源