论文标题

通过大规模的物理实验,软机器人的现实辅助演变:评论

Reality-assisted evolution of soft robots through large-scale physical experimentation: a review

论文作者

Howison, Toby, Hauser, Simon, Hughes, Josie, Iida, Fumiya

论文摘要

在这篇综述中,我们介绍了现实辅助进化的框架,以总结成不断增长的趋势,以结合基于模型的和无模型的方法来改善物理体现的软机器人的设计。在计算机中,数据驱动的模型使用现实世界实验数据构建,适应和改善目标系统的表示。通过使用这些数据驱动的模型模拟大量虚拟机器人,优化算法可以照亮多个设计候选者,以将其转移到现实世界。实际上,大规模的物理实验促进了多种候选设计的制造,测试和分析。自动组装和可重新配置的模块化系统比以前可能实现的现实世界设计评估要高得多。通过物理实验收集的大量基地数据可以返回虚拟环境,以改善数据驱动的模型和指导优化。在物理实验中扎根过程确保虚拟机器人设计的复杂性不会超过模型限制或可用的制造技术。我们概述了在现实辅助进化的框架下设计物理体现的软机器人的关键发展。

In this review we introduce the framework of reality-assisted evolution to summarize a growing trend towards combining model-based and model-free approaches to improve the design of physically embodied soft robots. In silico, data-driven models build, adapt and improve representations of the target system using real-world experimental data. By simulating huge numbers of virtual robots using these data-driven models, optimization algorithms can illuminate multiple design candidates for transference to the real world. In reality, large-scale physical experimentation facilitates the fabrication, testing and analysis of multiple candidate designs. Automated assembly and reconfigurable modular systems enable significantly higher numbers of real-world design evaluations than previously possible. Large volumes of ground-truth data gathered via physical experimentation can be returned to the virtual environment to improve data-driven models and guide optimization. Grounding the design process in physical experimentation ensures the complexity of virtual robot designs does not outpace the model limitations or available fabrication technologies. We outline key developments in the design of physically embodied soft robots under the framework of reality-assisted evolution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源