论文标题
在动态随机环境中随机步行的碰撞
Collisions of Random Walks in Dynamic Random Environments
论文作者
论文摘要
我们研究了$ \ mathbb {z}^2 $上的动态随机电导模型,其中环境作为一种可逆的马尔可夫进化而演变为在时空移动下静止的。我们证明在第二刻的假设下,在同一环境中有两个条件独立的随机步行几乎肯定会肯定地碰撞。这些结果特别适用于动态渗透的随机步行。
We study dynamic random conductance models on $\mathbb{Z}^2$ in which the environment evolves as a reversible Markov process that is stationary under space-time shifts. We prove under a second moment assumption that two conditionally independent random walks in the same environment collide infinitely often almost surely. These results apply in particular to random walks on dynamical percolation.