论文标题

文档级关系提取的基于双图的推理

Double Graph Based Reasoning for Document-level Relation Extraction

论文作者

Zeng, Shuang, Xu, Runxin, Chang, Baobao, Li, Lei

论文摘要

文档级别的关系提取旨在提取文档中实体之间的关系。与句子级别的关系提取不同,它需要对文档的多个句子进行推理。在本文中,我们提出了具有双图的图形聚合和推导网络(增益)。增益首先构建了异质提及的图表(HMG),以模拟整个文档中不同提及之间的复杂相互作用。它还构建了一个实体级图(例如),基于我们提出一种新颖的路径推理机制来推断实体之间的关系。在公共数据集上进行的实验显示增益比以前的最新面前的性能改善(F1上的2.85)。我们的代码可在https://github.com/dreaminvoker/gain上找到。

Document-level relation extraction aims to extract relations among entities within a document. Different from sentence-level relation extraction, it requires reasoning over multiple sentences across a document. In this paper, we propose Graph Aggregation-and-Inference Network (GAIN) featuring double graphs. GAIN first constructs a heterogeneous mention-level graph (hMG) to model complex interaction among different mentions across the document. It also constructs an entity-level graph (EG), based on which we propose a novel path reasoning mechanism to infer relations between entities. Experiments on the public dataset, DocRED, show GAIN achieves a significant performance improvement (2.85 on F1) over the previous state-of-the-art. Our code is available at https://github.com/DreamInvoker/GAIN .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源