论文标题

应用于雷达信号处理的机器学习的全面调查

A Comprehensive Survey of Machine Learning Applied to Radar Signal Processing

论文作者

Lang, Ping, Fu, Xiongjun, Martorella, Marco, Dong, Jian, Qin, Rui, Meng, Xianpeng, Xie, Min

论文摘要

在越来越复杂的电磁环境下运行时,现代雷达系统在准确性,鲁棒性和实时能力方面具有很高的要求。在满足此类要求时,尤其是在目标分类问题时,传统的雷达信号处理(RSP)方法已经显示出一些局限性。随着机器学习的快速发展(ML),尤其是深度学习,雷达研究人员在解决与RSP相关的问题时已经开始整合这些新方法。本文旨在帮助研究人员和从业人员通过提供基于ML的RSP技术的全面,结构化和理性的文献概述,以更好地了解ML技术在与RSP相关的问题上的应用。通过提供基于ML的RSP的一般元素并说明其背后的动机,可以充分引入这项工作。然后,基于应用程序字段对基于ML的RSP的主要应用进行分析和构造。然后,本文以一系列开放的问题和拟议的研究方向结束,以表明当前的差距以及潜在的未来解决方案和趋势。

Modern radar systems have high requirements in terms of accuracy, robustness and real-time capability when operating on increasingly complex electromagnetic environments. Traditional radar signal processing (RSP) methods have shown some limitations when meeting such requirements, particularly in matters of target classification. With the rapid development of machine learning (ML), especially deep learning, radar researchers have started integrating these new methods when solving RSP-related problems. This paper aims at helping researchers and practitioners to better understand the application of ML techniques to RSP-related problems by providing a comprehensive, structured and reasoned literature overview of ML-based RSP techniques. This work is amply introduced by providing general elements of ML-based RSP and by stating the motivations behind them. The main applications of ML-based RSP are then analysed and structured based on the application field. This paper then concludes with a series of open questions and proposed research directions, in order to indicate current gaps and potential future solutions and trends.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源