论文标题

统一拓扑顺序的退化

A degeneracy bound for homogeneous topological order

论文作者

Haah, Jeongwan

论文摘要

我们介绍了均匀拓扑顺序的概念,大多数(如果不是全部)已知的拓扑顺序示例(包括量子旋转(Qudits))的拓扑顺序示例(即使不是全部)。该概念是基态子空间的条件,而不是在哈密顿量上,要求给出类似球的区域的收集,地面空间上的任何线性转换都可以由避免球状区域的操作员实现。对于具有同质拓扑顺序的系统,我们以任意封闭的riemannian dimension $ d $的方式得出了基态退化$ \ MATHCAL D $,它读取\ [\ log \ log \ log \ nogcal d \ lecμ(l/a)^{d-2}一个仅取决于歧管的等距类别的常数,而$μ$的常数仅取决于自由度的密度。如果$ d = 2 $,则常数$ c $是太空歧管的(demi)属。通过已知示例将该结合饱和到常数。

We introduce a notion of homogeneous topological order, which is obeyed by most, if not all, known examples of topological order including fracton phases on quantum spins (qudits). The notion is a condition on the ground state subspace, rather than on the Hamiltonian, and demands that given a collection of ball-like regions, any linear transformation on the ground space be realized by an operator that avoids the ball-like regions. We derive a bound on the ground state degeneracy $\mathcal D$ for systems with homogeneous topological order on an arbitrary closed Riemannian manifold of dimension $d$, which reads \[ \log \mathcal D \le c μ(L/a)^{d-2}.\] Here, $L$ is the diameter of the system, $a$ is the lattice spacing, and $c$ is a constant that only depends on the isometry class of the manifold, and $μ$ is a constant that only depends on the density of degrees of freedom. If $d=2$, the constant $c$ is the (demi)genus of the space manifold. This bound is saturated up to constants by known examples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源