论文标题

$ p_t $ - free图中的独立设置的准多项式时间算法,通过缩小诱导路径的空间

Quasi-polynomial-time algorithm for Independent Set in $P_t$-free graphs via shrinking the space of induced paths

论文作者

Pilipczuk, Marcin, Pilipczuk, Michał, Rzążewski, Paweł

论文摘要

在最近的一项突破性工作中,Gartland和Lokshtanov [Focs 2020]显示了用于最大重量独立集的准多项式时间算法,该算法在$ p_t $ - 免费图中,也就是说,图形不包括固定路径作为诱导的子分类。他们的算法在时间上运行$ n^{\ mathcal {o}(\ log^3 n)} $,其中$ t $被认为是常数。受其想法的启发,我们可以说出一种更简单的算法,其改进的运行时间绑定为$ n^{\ Mathcal {o}(\ log^2 n)} $。我们的主要见解是,一个连接的$ p_t $ - free Graph始终包含一个顶点$ w $,其邻域相交,对于持续不断的对$ \ {u,v \} \ in \ binom {v(g)} {2} $,是诱导的$ v $ paths的恒定部分。由于$ p_t $ -free Graph包含$ \ MATHCAL {O}(n^{t-1})$诱导的路径,总共分支在此类顶点上并在连接的组件上独立递归导致准poly-polynomial运行时间限制。我们还表明,可以使用相同的方法来获得有关相关问题的准多项式时间算法,包括最大重量诱导的匹配和3色。

In a recent breakthrough work, Gartland and Lokshtanov [FOCS 2020] showed a quasi-polynomial-time algorithm for Maximum Weight Independent Set in $P_t$-free graphs, that is, graphs excluding a fixed path as an induced subgraph. Their algorithm runs in time $n^{\mathcal{O}(\log^3 n)}$, where $t$ is assumed to be a constant. Inspired by their ideas, we present an arguably simpler algorithm with an improved running time bound of $n^{\mathcal{O}(\log^2 n)}$. Our main insight is that a connected $P_t$-free graph always contains a vertex $w$ whose neighborhood intersects, for a constant fraction of pairs $\{u,v\} \in \binom{V(G)}{2}$, a constant fraction of induced $u-v$ paths. Since a $P_t$-free graph contains $\mathcal{O}(n^{t-1})$ induced paths in total, branching on such a vertex and recursing independently on the connected components leads to a quasi-polynomial running time bound. We also show that the same approach can be used to obtain quasi-polynomial-time algorithms for related problems, including Maximum Weight Induced Matching and 3-Coloring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源