论文标题

具有安全性的参数化合成

Parameterized Synthesis with Safety Properties

论文作者

Markgraf, Oliver, Hong, Chih-Duo, Lin, Anthony W., Najib, Muhammad, Neider, Daniel

论文摘要

参数化的合成为参数化系统构造正确和经过验证的控制器的问题提供了解决方案。这样的系统自然发生在实践中(例如,以分布式协议的形式出现,在设计时间通常未知过程,并且该协议必须工作,无论过程数量如何)。在本文中,我们提出了一种基于学习的新方法,用于从安全规范中合成参数化系统的反应性控制器。我们使用常规模型检查的框架将合成问题建模为无限持续的两种玩家游戏,并展示如何利用Angluin的众所周知的L*算法来学习正确的设计控制器。这种方法会导致一个合成过程,该过程在概念上比现有合成方法更简单,只要赢得策略可以通过常规集表达出来。我们已经在称为L*-Psynth的工具中实现了算法,并在包括机器人运动计划和分布式协议在内的一系列基准上展示了其性能。尽管L*-psynth的简单性与(甚至在许多情况下都胜过)合成参数化系统的最新工具。

Parameterized synthesis offers a solution to the problem of constructing correct and verified controllers for parameterized systems. Such systems occur naturally in practice (e.g., in the form of distributed protocols where the amount of processes is often unknown at design time and the protocol must work regardless of the number of processes). In this paper, we present a novel learning based approach to the synthesis of reactive controllers for parameterized systems from safety specifications. We use the framework of regular model checking to model the synthesis problem as an infinite-duration two-player game and show how one can utilize Angluin's well-known L* algorithm to learn correct-by-design controllers. This approach results in a synthesis procedure that is conceptually simpler than existing synthesis methods with a completeness guarantee, whenever a winning strategy can be expressed by a regular set. We have implemented our algorithm in a tool called L*-PSynth and have demonstrated its performance on a range of benchmarks, including robotic motion planning and distributed protocols. Despite the simplicity of L*-PSynth it competes well against (and in many cases even outperforms) the state-of-the-art tools for synthesizing parameterized systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源