论文标题
关于具有质量来源的Cahn-Hilliard-Darcy系统的强大解决方案
On the Existence of Strong Solutions to the Cahn-Hilliard-Darcy system with mass source
论文作者
论文摘要
我们研究了描述Hele-Shaw细胞中二元流体流动的漫射界面模型。该模型由带有运输和质量来源的Cahn-Hilliard-Darcy(CHD)型系统组成。相关的物理应用与肿瘤生长动力学有关,这特别证明了质量流入的发生合理性。我们研究了该模型的初始价值问题,并证明了在两个空间维度以及三个空间维度中的局部存在中强大解决方案的全球存在和独特性。
We study a diffuse interface model describing the evolution of the flow of a binary fluid in a Hele-Shaw cell. The model consists of a Cahn-Hilliard-Darcy (CHD) type system with transport and mass source. A relevant physical application is related to tumor growth dynamics, which in particular justifies the occurrence of a mass inflow. We study the initial-boundary value problem for this model and prove global existence and uniqueness of strong solutions in two space dimensions as well as local existence in three space dimensions.