论文标题
Bitenet:双向时间编码器网络以预测医疗结果
BiteNet: Bidirectional Temporal Encoder Network to Predict Medical Outcomes
论文作者
论文摘要
电子健康记录(EHR)是患者与医疗保健系统相互作用的纵向记录。患者的EHR数据被组织为从上到下的三级层次结构:患者旅程 - 一段时间内诊断和治疗的所有经验;个人访问 - 特定访问中的一组医疗法规;和医疗法规 - 以医疗法规形式的特定记录。随着EHR开始积累数百万美元,这些数据可能对医学研究和医学结果预测所具有的潜在好处令人震惊,包括预测对医院的未来入院,诊断疾病或确定医疗治疗的功效。这些分析任务中的每一个都需要一种域知识提取方法,以将分层的患者旅程转换为向量表示,以进行进一步的预测程序。表示形式应嵌入一系列访问和一组特定时间戳,这对于任何下游预测任务至关重要。因此,表现力强大的表示对提高学习绩效有吸引力。为此,我们提出了一种新颖的自我注意力,可以捕捉患者医疗保健旅程中的上下文依赖关系和时间关系。然后,端到端双向时间编码器网络(BITENET)仅根据提出的注意机制来学习患者旅行的表示。我们已经评估了方法对两个有监督的预测和两个无监督的聚类任务的有效性。经验结果表明,所提出的比纳特模型比最先进的基线方法产生更高的质量表示。
Electronic health records (EHRs) are longitudinal records of a patient's interactions with healthcare systems. A patient's EHR data is organized as a three-level hierarchy from top to bottom: patient journey - all the experiences of diagnoses and treatments over a period of time; individual visit - a set of medical codes in a particular visit; and medical code - a specific record in the form of medical codes. As EHRs begin to amass in millions, the potential benefits, which these data might hold for medical research and medical outcome prediction, are staggering - including, for example, predicting future admissions to hospitals, diagnosing illnesses or determining the efficacy of medical treatments. Each of these analytics tasks requires a domain knowledge extraction method to transform the hierarchical patient journey into a vector representation for further prediction procedure. The representations should embed a sequence of visits and a set of medical codes with a specific timestamp, which are crucial to any downstream prediction tasks. Hence, expressively powerful representations are appealing to boost learning performance. To this end, we propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey. An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys, based solely on the proposed attention mechanism. We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset. The empirical results demonstrate the proposed BiteNet model produces higher-quality representations than state-of-the-art baseline methods.