论文标题

ECGDETECT:通过深度学习检测缺血

ECGDetect: Detecting Ischemia via Deep Learning

论文作者

Burman, Atandra, Titus, Jitto, Gbadebo, David, Burman, Melissa

论文摘要

冠状动脉疾病(CAD)是心脏病的最常见类型,是全球死亡的主要原因[1]。冠状动脉(也称为急性冠状动脉综合征(AC),以斑块破裂和凝块形成为标志的这种疾病的渐进状态,是心脏的疾病,与突然的冠状动脉脉管造成的突然,血液流动降低相关,这是由于冠状动脉脉管的全部或全面闭塞,它们正常使心肌和norve bund骨出现正常地构成精神效果。通常,胸部的疼痛或紧绷表现为美国第二常见的急诊室访问原因,必须尽早发现ACS。这与家里的糖尿病患者尤其重要,这可能不会感觉到经典的胸痛症状,并且容易受到沉默的心肌损伤。在这项研究中,我们开发了RCE-ECG检测算法,这是一种机器学习模型,以检测与心肌缺血相关的显着ST变化中的形态学模式。我们使用LTST数据库中的数据开发了RCE-ECG-DETECT,该数据具有足够大的样本集来训练可靠的模型。我们在使用RCE的ECG可穿戴设备收集的保留测试集中验证了机器学习模型的预测性能。我们的深度神经网络模型配备了卷积层,达到了90.31%的ROC-AUC,灵敏度为89.34%,特异性为87.81%。

Coronary artery disease(CAD) is the most common type of heart disease and the leading cause of death worldwide[1]. A progressive state of this disease marked by plaque rupture and clot formation in the coronary arteries, also known as an acute coronary syndrome (ACS), is a condition of the heart associated with sudden, reduced blood flow caused due to partial or full occlusion of coronary vasculature that normally perfuses the myocardium and nerve bundles, compromising the proper functioning of the heart. Often manifesting with pain or tightness in the chest as the second most common cause of emergency department visits in the United States, it is imperative to detect ACS at the earliest. This is particularly relevant to diabetic patients at home, that may not feel classic chest pain symptoms, and are susceptible to silent myocardial injury. In this study, we developed the RCE- ECG-Detect algorithm, a machine learning model to detect the morphological patterns in significant ST change associated with myocardial ischemia. We developed the RCE- ECG-Detect using data from the LTST database which has a sufficiently large sample set to train a reliable model. We validated the predictive performance of the machine learning model on a holdout test set collected using RCE's ECG wearable. Our deep neural network model, equipped with convolution layers, achieves 90.31% ROC-AUC, 89.34% sensitivity, 87.81% specificity.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源