论文标题

$ε$ -NET引起的懒惰见证人综合体

$ε$-net Induced Lazy Witness Complexes on Graphs

论文作者

Arafat, Naheed Anjum, Basu, Debabrota, Bressan, Stéphane

论文摘要

诸如撕裂和CěCH复合物等简单表示的持久同源性的计算不会有效地扩展到大点云。因此,设计近似表示并评估其效率和有效性之间的权衡是有意义的。懒惰的证人综合体从经济上仅使用几个选定的地标的来定义这种代表。 传统上,拓扑数据分析在欧几里得空间中考虑了点云。但是,在许多情况下,数据以加权图的形式可用。图与大地距离定义了度量空间。图的这个度量空间适合拓扑数据分析。 我们讨论了加权图上持续的同源性的计算。我们提出了一种懒惰的证人复杂方法,利用了我们适应加权图及其地球距离的$ε$ -NET的概念,以选择地标。我们表明,$ε$ -NET的$ε$参数的值提供了对地标和数量数量之间的权衡以及近似简单表示的质量的控制权。 我们提出了三种用于构建图的$ε$ -NET的算法。我们相对和经验评估了它们诱导的地标的选择的效率和有效性,这些地标对于不同现实世界图的拓扑数据分析。

Computation of persistent homology of simplicial representations such as the Rips and the Cěch complexes do not efficiently scale to large point clouds. It is, therefore, meaningful to devise approximate representations and evaluate the trade-off between their efficiency and effectiveness. The lazy witness complex economically defines such a representation using only a few selected points, called landmarks. Topological data analysis traditionally considers a point cloud in a Euclidean space. In many situations, however, data is available in the form of a weighted graph. A graph along with the geodesic distance defines a metric space. This metric space of a graph is amenable to topological data analysis. We discuss the computation of persistent homologies on a weighted graph. We present a lazy witness complex approach leveraging the notion of $ε$-net that we adapt to weighted graphs and their geodesic distance to select landmarks. We show that the value of the $ε$ parameter of the $ε$-net provides control on the trade-off between choice and number of landmarks and the quality of the approximate simplicial representation. We present three algorithms for constructing an $ε$-net of a graph. We comparatively and empirically evaluate the efficiency and effectiveness of the choice of landmarks that they induce for the topological data analysis of different real-world graphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源