论文标题

与决策树进行特征选择的混合入侵检测

A Hybrid Intrusion Detection with Decision Tree for Feature Selection

论文作者

Umar, Mubarak Albarka, Zhanfang, Chen, Liu, Yan

论文摘要

由于入侵检测数据集的大小和性质,入侵检测系统(IDS)通常采用较高的计算复杂性来检查数据的特征并识别侵入性模式。数据预处理技术(例如特征选择)可以通过消除数据集中无关和冗余特征来降低这种复杂性。这项研究的目的是分析某些特征选择方法的效率和有效性,即基于包装的和基于滤镜的建模方法。为了实现这一目标,设计了功能选择算法的混合体与包装器和过滤器选择过程结合使用。我们建议使用决策树算法的基于包装器的混合入侵检测模型来指导选择过程。在包装器和基于过滤器的功能选择方法上使用了五种机器学习算法,用于使用UNSW-NB15数据集构建IDS模型。基于滤波器的三种方法,即信息增益,增益比和释放用于比较来确定所提出方法的效率和有效性。此外,还进行了与其他最新入侵检测方法进行公平的比较。实验结果表明,与最先进的作品相比,我们的方法非常有效,但是,与基于滤波器的方法相比,相比之下,它需要很高的计算时间。我们的工作还揭示了有关UNSW-NB15数据集的一致性的未观察到的问题。

Due to the size and nature of intrusion detection datasets, intrusion detection systems (IDS) typically take high computational complexity to examine features of data and identify intrusive patterns. Data preprocessing techniques such as feature selection can be used to reduce such complexity by eliminating irrelevant and redundant features in the dataset. The objective of this study is to analyze the efficiency and effectiveness of some feature selection approaches namely, wrapper-based and filter-based modeling approaches. To achieve that, a hybrid of feature selection algorithm in combination with wrapper and filter selection processes is designed. We propose a wrapper-based hybrid intrusion detection modeling with a decision tree algorithm to guide the selection process. Five machine learning algorithms are used on the wrapper and filter-based feature selection methods to build IDS models using the UNSW-NB15 dataset. The three filter-based methods namely, information gain, gain ratio, and relief are used for comparison to determine the efficiency and effectiveness of the proposed approach. Furthermore, a fair comparison with other state-of-the-art intrusion detection approaches is also performed. The experimental results show that our approach is quite effective in comparison to state-of-the-art works, however, it takes high computational time in comparison to the filter-based methods whilst achieves similar results. Our work also revealed unobserved issues about the conformity of the UNSW-NB15 dataset.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源