论文标题

NAS-NAVIGATOR:可解释的一声深神经网络合成的视觉转向

NAS-Navigator: Visual Steering for Explainable One-Shot Deep Neural Network Synthesis

论文作者

Tyagi, Anjul, Xie, Cong, Mueller, Klaus

论文摘要

深度学习领域的最新进展表明,非常大的神经网络在几种应用中的有效性。但是,随着这些深度神经网络的大小不断增长,配置其许多参数以获得良好的结果变得越来越困难。目前,分析师必须尝试许多不同的配置和参数设置,这是劳动密集型且耗时的。另一方面,没有人类专家的领域知识,用于神经网络架构搜索的完全自动化技术的能力受到限制。为了解决问题,我们基于单发体系结构搜索技术,将神经网络体系结构优化的任务作为图形空间探索。在这种方法中,所有候选体系结构的超级绘制都是单次训练的,最佳神经网络被确定为子图。在本文中,我们提出了一个框架,该框架允许分析师有效地构建解决方案子图空间,并通过注入其域知识来指导网络搜索。从由基本神经网络组件组成的网络体系结构空间开始,分析师有权通过我们的单次搜索方案有效地选择最有希望的组件。以迭代方式应用此技术,可以使分析师能够收敛到给定应用程序的最佳性能神经网络体系结构。在探索过程中,分析师可以通过从搜索空间的散点图可视化提供的线索来帮助编辑不同组件并指导搜索更快收敛的搜索。我们与几位深度学习研究人员合作设计了界面,并通过用户研究和两个案例研究来评估其最终有效性。

Recent advancements in the area of deep learning have shown the effectiveness of very large neural networks in several applications. However, as these deep neural networks continue to grow in size, it becomes more and more difficult to configure their many parameters to obtain good results. Presently, analysts must experiment with many different configurations and parameter settings, which is labor-intensive and time-consuming. On the other hand, the capacity of fully automated techniques for neural network architecture search is limited without the domain knowledge of human experts. To deal with the problem, we formulate the task of neural network architecture optimization as a graph space exploration, based on the one-shot architecture search technique. In this approach, a super-graph of all candidate architectures is trained in one-shot and the optimal neural network is identified as a sub-graph. In this paper, we present a framework that allows analysts to effectively build the solution sub-graph space and guide the network search by injecting their domain knowledge. Starting with the network architecture space composed of basic neural network components, analysts are empowered to effectively select the most promising components via our one-shot search scheme. Applying this technique in an iterative manner allows analysts to converge to the best performing neural network architecture for a given application. During the exploration, analysts can use their domain knowledge aided by cues provided from a scatterplot visualization of the search space to edit different components and guide the search for faster convergence. We designed our interface in collaboration with several deep learning researchers and its final effectiveness is evaluated with a user study and two case studies.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源