论文标题
各向异性复杂的金茨堡 - 兰道方程的相扩散方程
Phase-Diffusion Equations for the Anisotropic Complex Ginzburg-Landau Equation
论文作者
论文摘要
各向异性复合物Ginzburg-landau方程(ACGLE)描述了振动剂(HOPF)不稳定性的各向异性空间扩展系统中模式的缓慢调制,其波形量为零。在本杰明·弗吉尔 - 纽威尔的稳定性附近,向acgle的行驶波解决方案变得不稳定。我们确定参数空间中的两个不稳定性条件和研究编辑词(-2)分叉,如果满足了一(两个)条件,则会发生。我们得出各向异性库拉莫托 - 苏瓦辛斯基型方程,该方程控制了复杂溶液对acgle的相位,并从相位方程的溶液中生成了对ACGLE的溶液。
The anisotropic complex Ginzburg-Landau equation (ACGLE) describes slow modulations of patterns in anisotropic spatially extended systems near oscillatory (Hopf) instabilities with zero wavenumbers. Traveling wave solutions to the ACGLE become unstable near Benjamin-Feir-Newell instabilities. We determine two instability conditions in parameter space and study codimension-one (-two) bifurcations that occur if one (two) of the conditions is (are) met. We derive anisotropic Kuramoto-Sivashinsky-type equations that govern the phase of the complex solutions to the ACGLE and generate solutions to the ACGLE from solutions of the phase equations.