论文标题

用于约束凸优化问题的原始双重亚级别方法

Primal-dual subgradient method for constrained convex optimization problems

论文作者

Metel, Michael R., Takeda, Akiko

论文摘要

本文考虑了一般凸的限制问题设置,其中不假定函数是可区分的,也不是Lipschitz的连续。我们的动机是找到一种简单的一阶方法,用于解决最小要求的广泛凸优化问题。我们在这种情况下研究了加权双平均值的方法(Nesterov,2009年),并证明它是一种最佳方法。

This paper considers a general convex constrained problem setting where functions are not assumed to be differentiable nor Lipschitz continuous. Our motivation is in finding a simple first-order method for solving a wide range of convex optimization problems with minimal requirements. We study the method of weighted dual averages (Nesterov, 2009) in this setting and prove that it is an optimal method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源