论文标题

PSR J0437-4715的星际闪烁电弧的精密轨道动力学

Precision orbital dynamics from interstellar scintillation arcs for PSR J0437-4715

论文作者

Reardon, Daniel J., Coles, William A., Bailes, Matthew, Bhat, N. D. Ramesh, Dai, Shi, Hobbs, George B., Kerr, Matthew, Manchester, Richard N., Oslowski, Stefan, Parthasarathy, Aditya, Russell, Christopher J., Shannon, Ryan M., Spiewak, Renee, Toomey, Lawrence, Tuntsov, Artem V., van Straten, Willem, Walker, Mark A., Wang, Jingbo, Zhang, Lei, Zhu, Xing-Jiang

论文摘要

已知无线电脉冲星的强度闪烁源于星际等离子体的电子密度不规则的波动之间的干扰,通常导致记录动力学谱的二维功率谱中的抛物线弧。弧曲率的程度取决于散射等离子体的距离及其相对于视线的横向速度。我们报告了明亮的毫秒Pulsar,PSR J0437-4715的闪烁弧曲率曲率的年度和轨道变化的观察。这些变化是地球,脉冲星和散射培养基的相对横向运动的标志,我们对其进行建模,以获得脉冲星的二进制轨道参数和散射介质本身的精确测量。我们在大多数$> $ 5000的观察值中观察到两个清晰的闪烁电弧,我们表明它们源自位于距离处的薄屏幕$ d_1 = 89.8 \ pm 0.4 $ pc和$ d_2 = 124 \ pm pm 3 $ PC。我们为最明亮的弧而得出的最佳拟合散射模型产生了脉冲星的轨道倾斜角$ i = 137.1 \ pm 0.3^\ circ $和上升节点的经度,$ω= 206.3 \ pm0.4^\ circ $。使用闪烁弧进行精确的天体和轨道动力学,可以优于衍射闪烁时间尺度的建模变化,因为弧曲率与星际等离子体湍流水平的变化有关。该技术可以与脉冲星的时间结合使用,以确定二元脉冲星的完整三维轨道几何形状,并为测试重力和约束中子星质量的理论提供了必不可少的参数。

Intensity scintillations of radio pulsars are known to originate from interference between waves scattered by the electron density irregularities of interstellar plasma, often leading to parabolic arcs in the two-dimensional power spectrum of the recorded dynamic spectrum. The degree of arc curvature depends on the distance to the scattering plasma and its transverse velocity with respect to the line-of-sight. We report the observation of annual and orbital variations in the curvature of scintillation arcs over a period of 16 years for the bright millisecond pulsar, PSR J0437-4715. These variations are the signature of the relative transverse motions of the Earth, pulsar, and scattering medium, which we model to obtain precise measurements of parameters of the pulsar's binary orbit and the scattering medium itself. We observe two clear scintillation arcs in most of our $>$5000 observations and we show that they originate from scattering by thin screens located at distances $D_1 = 89.8 \pm 0.4$ pc and $D_2 = 124 \pm 3$ pc from Earth. The best-fit scattering model we derive for the brightest arc yields the pulsar's orbital inclination angle $i = 137.1 \pm 0.3^\circ$, and longitude of ascending node, $Ω=206.3\pm0.4^\circ$. Using scintillation arcs for precise astrometry and orbital dynamics can be superior to modelling variations in the diffractive scintillation timescale, because the arc curvature is independent of variations in the level of turbulence of interstellar plasma. This technique can be used in combination with pulsar timing to determine the full three-dimensional orbital geometries of binary pulsars, and provides parameters essential for testing theories of gravity and constraining neutron star masses.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源