论文标题
多面体表面的离散保形几何及其收敛性
Discrete Conformal Geometry of Polyhedral Surfaces and Its Convergence
论文作者
论文摘要
该论文证明了离散共形图与约旦域的Riemann映射的收敛性。它是罗丹·苏利文(Rodin-Sullivan)在新的离散结合性环境中圆形映射到Riemann映射的圆形映射的收敛性的定理的对应物。该证明遵循与罗丹·苏利文(Rodin-Sullivan)使用的刚性刚度的刚性结果相同的策略,并估算了与离散的共形图相关的准信息常数。
The paper proves a result on the convergence of discrete conformal maps to the Riemann mappings for Jordan domains. It is a counterpart of Rodin-Sullivan's theorem on convergence of circle packing mappings to the Riemann mapping in the new setting of discrete conformality. The proof follows the same strategy that Rodin-Sullivan used by establishing a rigidity result for regular hexagonal triangulations of the plane and estimating the quasiconformal constants associated to the discrete conformal maps.