论文标题
Barnes Double Zeta功能的真正零在间隔$(1,2)$中
Real zeros of the Barnes double zeta function in the interval $(1, 2)$
论文作者
论文摘要
令$ a,w_1,w_2,\ cdot \ cdot \ cdot,w_r> 0 $和$ s \ in \ mathbb {c} $。我们将$ w =(w_1,\ cdot \ cdot \ cdot,w_r)$。然后,barnes $ r $ - zeta函数由$ζ_R(s,w,a)= \ sum_ {m_1 = 0}^{\ infty} \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ cdot \ sum_ {m_r = 0} +m_rw_r)^s $当$σ:= \ re(s)> r $。在本文中,我们表明barnes double zeta函数$ζ_2(σ,w,a)$在间隔$(1,2)$中具有真实的零,并且仅当$ 0 <a <(w_1+w_2)/2 $,此类Zero的数量恰好是$ 0 <(W_1+W_2)/2 $。
Let $a, w_1, w_2,\cdot\cdot\cdot, w_r >0$ and $s \in \mathbb{C}$. We put $w= (w_1,\cdot\cdot\cdot,w_r)$. Then the Barnes $r$-ple zeta function is defined by $ζ_r(s, w, a) = \sum_{m_1=0}^{\infty} \cdot\cdot\cdot \sum_{m_r=0}^{\infty} 1/(a+m_1w_1+\cdot\cdot\cdot +m_rw_r)^s$ when $σ:= \Re(s)>r$. In this paper, we show that the Barnes double zeta function $ζ_2(σ, w, a)$ has real zeros in the interval $(1,2)$ if and only if $0< a < (w_1+w_2)/2$ and the number of such zero is precisely one if $0< a< (w_1+w_2)/2$.