论文标题

Bekenstein绑定和不确定性关系

Bekenstein bound and uncertainty relations

论文作者

Buoninfante, Luca, Luciano, Giuseppe Gaetano, Petruzziello, Luciano, Scardigli, Fabio

论文摘要

普朗克常数$ h $的非零价值是量子领域中必须满足的几种不平等现象的出现,最突出的是海森堡的不确定性原则。在这些不平等现象中,Bekenstein Bound对熵提供了普遍的限制,该熵可以包含在给定尺寸和总能量的局部量子系统中。在这封信中,我们探讨了当海森伯格不确定性关系变形以适应接近普朗克量表(普遍不确定性原理)时,Bekenstein Bond如何受到影响。通过诉诸一般的热力学论点,以及在电气定理仍然存在的机制中,我们以这种方式得出了“广义的Bekenstein结合”。对于变形参数的正值和负值的情况,讨论了该结果的物理意义。

The non zero value of Planck constant $h$ underlies the emergence of several inequalities that must be satisfied in the quantum realm, the most prominent one being Heisenberg Uncertainty Principle. Among these inequalities, Bekenstein bound provides a universal limit on the entropy that can be contained in a localized quantum system of given size and total energy. In this Letter, we explore how Bekenstein bound is affected when Heisenberg uncertainty relation is deformed so as to accommodate gravitational effects close to Planck scale (Generalized Uncertainty Principle). By resorting to general thermodynamic arguments, and in regimes where the equipartition theorem still holds, we derive in this way a "generalized Bekenstein bound". Physical implications of this result are discussed for both cases of positive and negative values of the deformation parameter.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源