论文标题

迈向自然语言查询处理系统

Towards a Natural Language Query Processing System

论文作者

Montgomery, Chantal, Isah, Haruna, Zulkernine, Farhana

论文摘要

解决非技术数据库最终用户与具有正式查询语言的信息之间的信息检索差距一直是数据管理和分析研究的一个有趣领域。使用自然语言界面从数据库中查询信息,这为弥合最终用户和使用正式查询语言的系统之间的通信挑战提供了机会。先前的研究工作主要集中在为关系数据库开发结构化查询界面。但是,非结构化的大数据(例如文本,图像和视频)的演变揭示了传统的结构性查询接口的局限性。尽管现有的Web搜索工具证明了自然语言查询的受欢迎程度和可用性,但它们返回完整的文档和网页,而不是重点查询响应,并且不适用于数据库系统。本文报告了我们对后端关系数据库的自然语言查询接口的设计和开发的研究。研究中的新颖性在于将图形数据库定义为中间层,以存储将自然语言查询转换为可以在后端数据库中执行的结构化查询语言所需的必要元数据。我们使用餐厅数据集实施并评估了我们的方法。某些样品查询的翻译结果产生了90%的精度。

Tackling the information retrieval gap between non-technical database end-users and those with the knowledge of formal query languages has been an interesting area of data management and analytics research. The use of natural language interfaces to query information from databases offers the opportunity to bridge the communication challenges between end-users and systems that use formal query languages. Previous research efforts mainly focused on developing structured query interfaces to relational databases. However, the evolution of unstructured big data such as text, images, and video has exposed the limitations of traditional structured query interfaces. While the existing web search tools prove the popularity and usability of natural language query, they return complete documents and web pages instead of focused query responses and are not applicable to database systems. This paper reports our study on the design and development of a natural language query interface to a backend relational database. The novelty in the study lies in defining a graph database as a middle layer to store necessary metadata needed to transform a natural language query into structured query language that can be executed on backend databases. We implemented and evaluated our approach using a restaurant dataset. The translation results for some sample queries yielded a 90% accuracy rate.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源