论文标题
磁各向异性的交替,伴随着金属 - 绝缘体过渡,在应变的超薄锰矿异质结构中
Alternation of Magnetic Anisotropy Accompanied by Metal-Insulator Transition in Strained Ultrathin Manganite Heterostructures
论文作者
论文摘要
铁磁异质结构中对界面磁性的基本了解对于利用铁磁材料进行自旋装置的应用至关重要。在本文中,我们研究了外部单晶laalo $ _3 $(lao)/la $ _ {0.6} $ _ {0.6} $ sr $ _ {0.4} $ mno $ _3 $(lsmo)/nb:srtio $ _3 $(nb:nb:sto),由于使用X射线磁性圆形二科主义(XMCD)和光发射光谱光谱(PES),磁各向异性的变化取决于源自NB:Sto和Lao层的菌株之间的微妙平衡,这取决于LSMO厚度。我们成功地检测了MN离子与厚度依赖性金属 - 绝缘体跃迁(MIT)的明显变化。我们的结果表明,双交换相互作用在由Srtio $ _3 $底物引起的拉伸菌株下诱导金属LSMO膜中的铁磁性,而superexchange相互作用决定了从顶部loo层的压缩应变下绝缘LSMO膜的磁性行为。根据这些发现,在老挝/LSMO界面附近的磁死层形成归因于通过Mn 3 $ d_ {3 Z^2-R^2} $ orbitals在压缩应变下通过3 $ d_ {x^2-y^2 Y^2} $ ORBITALS在压缩应变下进行竞争。
Fundamental understanding of interfacial magnetic properties in ferromagnetic heterostructures is essential to utilize ferromagnetic materials for spintronic device applications. In this paper, we investigate the interfacial magnetic and electronic structures of epitaxial single-crystalline LaAlO$_3$ (LAO)/La$_{0.6}$Sr$_{0.4}$MnO$_3$ (LSMO)/Nb:SrTiO$_3$ (Nb:STO) heterostructures with varying LSMO-layer thickness, in which the magnetic anisotropy strongly changes depending on the LSMO thickness due to the delicate balance between the strains originating from both the Nb:STO and LAO layers, using x-ray magnetic circular dichroism (XMCD) and photoemission spectroscopy (PES). We successfully detect the clear change of the magnetic behavior of the Mn ions concomitant with the thickness-dependent metal-insulator transition (MIT). Our results suggest that double-exchange interaction induces the ferromagnetism in the metallic LSMO film under tensile strain caused by the SrTiO$_3$ substrate, while superexchange interaction determines the magnetic behavior in the insulating LSMO film under compressive strain originating from the top LAO layer. Based on those findings, the formation of a magnetic dead layer near the LAO/LSMO interface is attributed to competition between the superexchange interaction via Mn 3$d_{3z^2-r^2}$ orbitals under compressive strain and the double-exchange interaction via the 3$d_{x^2-y^2}$ orbitals.