论文标题

使用双向LSTM在多变量时间序列上预测COVID-19病例

Predicting COVID-19 cases using Bidirectional LSTM on multivariate time series

论文作者

Said, Ahmed Ben, Erradi, Abdelkarim, Aly, Hussein, Mohamed, Abdelmonem

论文摘要

背景:为了帮助决策者做出足够的决定以阻止19009年大流行的传播,对疾病传播的准确预测至关重要。材料和方法:本文提出了一种深度学习方法,以预测使用用于多变量时间序列的双向长期记忆(BI-LSTM)网络的双向长期记忆(BI-LSTM)网络的累积数量。与其他预测技术不同,我们提出的方法是使用K-均值聚类算法的人口和社会经济方面和卫生部门指标相似的国家。每个集群国家的累积案例数据富含与锁定措施有关的数据的数据都被馈送到双向LSTM以训练预测模型。结果:我们通过研究卡塔尔疾病爆发来验证拟议方法的有效性。使用多个评估指标的定量评估表明,该提出的技术的表现优于制作预测方法。结论:使用多个国家的数据,除了锁定措施外,还提高了每日累积Covid-19案例的预测准确性。

Background: To assist policy makers in taking adequate decisions to stop the spread of COVID-19 pandemic, accurate forecasting of the disease propagation is of paramount importance. Materials and Methods: This paper presents a deep learning approach to forecast the cumulative number of COVID-19 cases using Bidirectional Long Short-Term Memory (Bi-LSTM) network applied to multivariate time series. Unlike other forecasting techniques, our proposed approach first groups the countries having similar demographic and socioeconomic aspects and health sector indicators using K-Means clustering algorithm. The cumulative cases data for each clustered countries enriched with data related to the lockdown measures are fed to the Bidirectional LSTM to train the forecasting model. Results: We validate the effectiveness of the proposed approach by studying the disease outbreak in Qatar. Quantitative evaluation, using multiple evaluation metrics, shows that the proposed technique outperforms state-of-art forecasting approaches. Conclusion: Using data of multiple countries in addition to lockdown measures improve accuracy of the forecast of daily cumulative COVID-19 cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源