论文标题
CAD2REAL:深度学习与CAD数据的域随机化,用于3D姿势估计电子控制单元壳体
CAD2Real: Deep learning with domain randomization of CAD data for 3D pose estimation of electronic control unit housings
论文作者
论文摘要
电子控制单元(ECU)对于许多汽车组件,例如发动机,防锁制动系统(ABS),转向和安全气囊。对于某些产品,需要在串联生产过程中确定每个ECU的3D姿势。深度学习方法无法轻易应用于此问题,因为标记的培训数据没有足够的数量。因此,我们在纯合成训练数据上训练最先进的人工神经网络(ANN),该数据是由单个CAD文件自动创建的。通过在训练图像的渲染过程中随机化参数,我们可以对真实样品部分的RGB图像进行推断。与经典的图像处理方法相反,这种数据驱动的方法仅在很少的开发工作中对相关用例的测量设置和传输的要求只提出了很少的要求。
Electronic control units (ECUs) are essential for many automobile components, e.g. engine, anti-lock braking system (ABS), steering and airbags. For some products, the 3D pose of each single ECU needs to be determined during series production. Deep learning approaches can not easily be applied to this problem, because labeled training data is not available in sufficient numbers. Thus, we train state-of-the-art artificial neural networks (ANNs) on purely synthetic training data, which is automatically created from a single CAD file. By randomizing parameters during rendering of training images, we enable inference on RGB images of a real sample part. In contrast to classic image processing approaches, this data-driven approach poses only few requirements regarding the measurement setup and transfers to related use cases with little development effort.