论文标题
高性能GPU的压缩基础GMRE
Compressed Basis GMRES on High Performance GPUs
论文作者
论文摘要
Krylov方法为许多大规模稀疏线性系统的迭代解决方案提供了快速且高度平行的数值工具。在很大程度上,这些方法的实际实现的性能受到所有当前计算机体系结构中的通信带宽的限制,激发了最近对复杂技术的调查,以避免,减少和/或隐藏消息通讯成本(在分布式平台中)和内存访问(在所有体系结构中)。 本文为(Krylov)GMRES求解器介绍了一种新的交流策略,该策略主张将正交基础的存储格式(即记忆中的数据表示)与操作过程中使用的算术精确度取消。鉴于GMRES求解器的执行时间在很大程度上取决于内存访问,因此数据类型变换可以大部分隐藏,从而通过从内存中检索到较低的位置,从而导致迭代步骤的加速。加上正统基础的特殊特性(其元素均由1个界限),这铺平了通往存储格式的积极定制的道路,其中包括一些浮点以及固定点格式,对迭代过程的收敛很小。 我们开发了在银杏稀疏线性代数库中“压缩基础GMRE”求解器的高性能实施,并使用Suitesparse Matrix藏品中的大量测试问题,我们在现代的NVIDIA V100 GPU上证明了稳健性和性能优势,高达50%的标准GMRes lover,该标准GMRes loffer在In eee eee eee ee eee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee ee is of 50%均高达50%。
Krylov methods provide a fast and highly parallel numerical tool for the iterative solution of many large-scale sparse linear systems. To a large extent, the performance of practical realizations of these methods is constrained by the communication bandwidth in all current computer architectures, motivating the recent investigation of sophisticated techniques to avoid, reduce, and/or hide the message-passing costs (in distributed platforms) and the memory accesses (in all architectures). This paper introduces a new communication-reduction strategy for the (Krylov) GMRES solver that advocates for decoupling the storage format (i.e., the data representation in memory) of the orthogonal basis from the arithmetic precision that is employed during the operations with that basis. Given that the execution time of the GMRES solver is largely determined by the memory access, the datatype transforms can be mostly hidden, resulting in the acceleration of the iterative step via a lower volume of bits being retrieved from memory. Together with the special properties of the orthonormal basis (whose elements are all bounded by 1), this paves the road toward the aggressive customization of the storage format, which includes some floating point as well as fixed point formats with little impact on the convergence of the iterative process. We develop a high performance implementation of the "compressed basis GMRES" solver in the Ginkgo sparse linear algebra library and using a large set of test problems from the SuiteSparse matrix collection we demonstrate robustness and performance advantages on a modern NVIDIA V100 GPU of up to 50% over the standard GMRES solver that stores all data in IEEE double precision.