论文标题
界定量子多体动力学模拟的有限尺寸误差
Bounding the finite-size error of quantum many-body dynamics simulations
论文作者
论文摘要
有限大小的误差(FSE)是有限系统中可观察到的差异,在量子许多身体系统的数值模拟中无处不在。尽管可以从一系列有限尺寸的结果中获得这些错误的粗略估计,但仍缺少对FSE幅度的严格定量结合。在这里,我们在从产品状态初始化的实时量子动力学模拟中,在局部可观察物的FSE上得出了严格的上限。在$ d $ - 二维的本地交互系统与有限的当地希尔伯特空间中,我们的界限暗示$ | \ langle \ hat {s}(t)(t)\ rangle_l- \ langle \ langle \ hat {s}(s}(t)\ rangle_ \ rangle_ \ rangle_ \ rangle_ \ ing \ infty | $μ$常数独立于$ l $和$ t $,我们明确计算。对于周期性边界条件(PBC),常数$ c $的大小是开放边界条件(OBC)的两倍,这表明PBC在早期的FSE比OBC小。该界限也可以推广到一类相关的初始状态。作为副产品,我们证明,在适当的频谱间隙条件下,基态模拟中的本地可观察物的FSE以$ L $的形式衰减。我们的边界实际上在确定有限尺寸结果的有效性方面很有用,正如我们在对一维(1D)量子和费米 - 哈伯德模型的模拟中所证明的那样。
Finite-size error (FSE), the discrepancy between an observable in a finite system and in the thermodynamic limit, is ubiquitous in numerical simulations of quantum many body systems. Although a rough estimate of these errors can be obtained from a sequence of finite-size results, a strict, quantitative bound on the magnitude of FSE is still missing. Here we derive rigorous upper bounds on the FSE of local observables in real time quantum dynamics simulations initialized from a product state. In $d$-dimensional locally interacting systems with a finite local Hilbert space, our bound implies $ |\langle \hat{S}(t)\rangle_L-\langle \hat{S}(t)\rangle_\infty|\leq C(2v t/L)^{cL-μ}$, with $v$, $C$, $c$, $μ$ constants independent of $L$ and $t$, which we compute explicitly. For periodic boundary conditions (PBC), the constant $c$ is twice as large as that for open boundary conditions (OBC), suggesting that PBC have smaller FSE than OBC at early times. The bound can be generalized to a large class of correlated initial states as well. As a byproduct, we prove that the FSE of local observables in ground state simulations decays exponentially with $L$, under a suitable spectral gap condition. Our bounds are practically useful in determining the validity of finite-size results, as we demonstrate in simulations of the one-dimensional (1D) quantum Ising and Fermi-Hubbard models.