论文标题

自动者:知识图嵌入的自动实体类型表示

AutoETER: Automated Entity Type Representation for Knowledge Graph Embedding

论文作者

Niu, Guanglin, Li, Bo, Zhang, Yongfei, Pu, Shiliang, Li, Jingyang

论文摘要

知识图嵌入(KGE)的最新进展允许在连续向量空间中代表实体和关系。一些利用其他类型信息的传统KGE模型可以改善实体的表示,这些实体完全依赖于明确的类型或忽略了各种关系的各种类型表示。此外,现有方法都不能同时推断对称,反转和组成的所有关系模式以及1-N,N-1和N-N关系的复杂属性。为了探索任何KG的类型信息,我们开发了一个具有自动实体类型表示(AUTOETER)的新颖的KGE框架,该框架通过将每个关系作为每个实体的翻译操作来了解每个实体的潜在类型嵌入,这是两个实体之间具有关系所吸引的投影机制的类型之间的翻译操作。特别是,我们设计的自动化类型表示学习机制是一个可插入的模块,可以轻松地与任何KGE模型合并。此外,我们的方法可以建模并推断所有关系模式和复杂关系。与链接预测任务上的最新基线相比,四个数据集上的实验证明了我们的模型的出色性能,类型聚类的可视化清楚地说明了类型嵌入的解释,并验证了我们模型的有效性。

Recent advances in Knowledge Graph Embedding (KGE) allow for representing entities and relations in continuous vector spaces. Some traditional KGE models leveraging additional type information can improve the representation of entities which however totally rely on the explicit types or neglect the diverse type representations specific to various relations. Besides, none of the existing methods is capable of inferring all the relation patterns of symmetry, inversion and composition as well as the complex properties of 1-N, N-1 and N-N relations, simultaneously. To explore the type information for any KG, we develop a novel KGE framework with Automated Entity TypE Representation (AutoETER), which learns the latent type embedding of each entity by regarding each relation as a translation operation between the types of two entities with a relation-aware projection mechanism. Particularly, our designed automated type representation learning mechanism is a pluggable module which can be easily incorporated with any KGE model. Besides, our approach could model and infer all the relation patterns and complex relations. Experiments on four datasets demonstrate the superior performance of our model compared to state-of-the-art baselines on link prediction tasks, and the visualization of type clustering provides clearly the explanation of type embeddings and verifies the effectiveness of our model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源